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We report on coupled heat and particle transport measurements
through a quantum point contact (QPC) connecting two reservoirs
of resonantly interacting, finite temperature Fermi gases. After
heating one of them, we observe a particle current flowing from
cold to hot. We monitor the temperature evolution of the reser-
voirs and find that the system evolves after an initial response
into a nonequilibrium steady state with finite temperature and
chemical potential differences across the QPC. In this state any
relaxation in the form of heat and particle currents vanishes. From
our measurements we extract the transport coefficients of the
QPC and deduce a Lorenz number violating the Wiedemann–Franz
law by one order of magnitude, a characteristic persisting even
for a wide contact. In contrast, the Seebeck coefficient takes a
value close to that expected for a noninteracting Fermi gas and
shows a smooth decrease as the atom density close to the QPC is
increased beyond the superfluid transition. Our work represents
a fermionic analog of the fountain effect observed with super-
fluid helium and poses challenges for microscopic modeling of the
finite temperature dynamics of the unitary Fermi gas.

cold atoms | mesoscopic physics | unitary Fermi gas | thermoelectric
effects | quantum simulation

The interplay between heat and matter currents in a many-
body system sheds light on its fundamental properties and

the character of its excitations. Transport measurements are a
particularly important probe in the presence of strong inter-
actions and high temperatures T , when a microscopic model
is absent or computationally intractable. Phenomenologically,
the dependence of the currents on external biases is captured
by transport coefficients, such as the particle conductance G
or the thermal conductance GT . They determine the ability
of a system to relax toward equilibrium at long times and
give unique information on its physical nature. For instance,
the Wiedemann–Franz law states that the ratio GT/TG ≡L,
the Lorenz number, takes a universal value for all Fermi liq-
uids in the low-temperature limit. Therefore, any breakdown
signals physics going beyond a Fermi liquid behavior, as has
been observed in the normal phase of high-temperature super-
conductors (1). In addition, measuring the coupling between
heat and particle currents, the Seebeck or Peltier effects, gives
direct access to the entropy carried by one transported particle
and sensitively probes the energy dependence of the trans-
port processes. Numerous studies have documented the impor-
tance of such measurements (2, 3), both for realizing efficient
thermoelectric materials (4) and for understanding correlated
systems (5, 6).

A cold atomic Fermi gas in the vicinity of a Feshbach reso-
nance is a fundamental example of a strongly correlated Fermi
system. Owing to the control offered by laser manipulation, its
trapping potential can be shaped into custom geometries such as
a two-terminal configuration, allowing one to measure transport
coefficients (7). Previous studies of the unitary Fermi gas have
charted out its thermodynamic properties (8, 9). Recently, trans-
port experiments have observed dissipation processes occurring
in the presence of a weak link, such as vortex nucleation in a

Josephson junction and multiple Andreev reflections (10–12),
and heat waves in the form of second sound have been observed
(13, 14).

Thermoelectric effects in cold atoms have been studied
for bosonic systems (15–18) and within Bardeen–Cooper–
Schrieffer (BCS) theory (19); however, the thermoelectric cou-
pling between heat and particle currents in the unitary regime
has not been experimentally addressed. Such a study is particu-
larly relevant for applications to cooling protocols as well as for
singling out the contribution of fermionic particles to heat flow
(20–23). Indeed, in contrast to solid-state systems, where the lat-
tice melts at high temperatures, the unitary Fermi gas realized in
cold atoms remains free of lattice phonons at all temperatures.

In this paper, we report on measurements of heat and particle
transport through a quantum point contact connecting two reser-
voirs of strongly correlated Fermi gases across the superfluid
transition. We explore the unitary Fermi gas at temperatures
slightly below the critical temperature, where the reservoirs
are weakly in the superfluid regime. There we have observed
a linear current–bias relation, contrary to lower-temperature
regimes at a superfluid–normal–superfluid junction where non-
linearities have been shown (12). We enter the predicted large
critical region of the normal-to-superfluid transition of the uni-
tary Fermi gas (24) where the behavior of the many-body system
still needs to be investigated. It is an open question whether the
disappearance of the superfluid signature in particle transport is
concomitant with a restored Fermi liquid behavior.

Significance

Heat and matter currents are required to relax an out-of-
equilibrium system with temperature and chemical potential
gradients to thermodynamical equilibrium. The ratio of heat
to particle conductance characterizes this response and takes
a universal value for typical electronic materials, known as
the Wiedemann–Franz law, originating in the quasi-particle
nature of the excitations contributing to transport. Investi-
gating the transport dynamics between two reservoirs of
ultracold and strongly interacting Fermi gases, connected by a
quantum point contact, we observe a nonequilibrium steady
state, strongly violating the Wiedemann–Franz law. This cold
atom version of the fountain effect, previously observed in
superfluid helium superleaks, is characterized by a weak cou-
pling between heat and particle currents that results in a
nonvanishing Seebeck coefficient.
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We observe the evolution of an initially imposed temperature
imbalance for equal atom numbers in a two-terminal Landauer
configuration (7). In general, coupled particle and heat currents
tend to pull a system toward thermodynamical equilibrium. How-
ever, here the system evolves toward a nonequilibrium steady
state (NESS) within the timescale of the experiment. While
typically a NESS is associated to stationary states of open sys-
tems (25), here it can also describe our experiments due to the
presence of dissipation and thermodynamic driving forces. Our
results sharply contrast with previous experiments observing heat
transport with weakly interacting atoms (26). There a single time
constant was found to describe the dynamics for temperature and
particle relaxation.

Here, our observations reveal a strong separation of heat
and particle transport timescales, resulting in a Lorenz num-
ber much lower than the value expected for a Fermi liquid.
The paradigmatic system supporting suppressed heat transport
is the so-called superleak in liquid bosonic helium II. Heating
one side of the superleak yields the fountain effect, where both
the Seebeck coefficient and the thermal conductance vanish.
Our observations represent a fermionic analog to the fountain
effect, where the quantum point contact (QPC) takes the role
of the superleak with very low thermal and particle conduc-
tance in the noninteracting limit. We, however, measure a finite
Seebeck coefficient even in the superfluid regime, calling for a
description of the transport process going beyond the standard
two-fluid model.

System
Our experiment consists of a QPC imprinted onto a cold, uni-
tary Fermi gas of 6Li atoms, as in our previous work (12, 27).
We form the QPC using two far-detuned repulsive laser beams
with a line of zero intensity in the center, resulting in a region
of tight harmonic confinement with typical frequencies of νx =
20.2(6) kHz and νz = 12.9(5) kHz (Fig. 1A) setting an energy
spacing between transverse modes of hνx(z). This mesoscopic
structure connects two initially decoupled reservoirs, labeled
as left (L) and right (R), and enables the transport of par-
ticles and heat. The reservoirs contain a mixture of the low-
est and third lowest hyperfine state, with typically N =NL +
NR = 97(4) · 103 atoms in each spin state, temperatures of T̄ =
(TL +TR)/2 = 184(8) nK, and chemical potentials of µ̄= (µL +
µR)/2 = 272(24) nK · kB. Here Ni , Ti , and µi with i = L, R indi-
cate the atom number, temperature, and chemical potential of
the individual reservoirs. We control the density inside and close
to the QPC by varying the power of an additional laser beam
which creates an attractive gate potential VG . At this tempera-
ture and chemical potential, up to a few transverse modes in the
x and z direction are populated (SI Appendix, Transport Modes).

We bring the system out of equilibrium by heating either of
the reservoirs using an intensity-modulated laser beam focused
on the reservoir, while maintaining the QPC closed. This results
in a temperature difference up to ∆T =TL−TR =±83 nK. In
each of the reservoirs, seen as half-harmonic traps, atom num-
ber N and internal energy E are obtained from density profiles
(Fig. 1B). These quantities can be converted to any other thermo-
dynamic variable such as temperature T or chemical potential
µ, using the unitary equation of state (EoS). Here the reduced
chemical potential q = µ̄/kBT̄ ≈ 1.5 in the reservoirs is below
the superfluid transition point at qc = 2.5 (14). By tuning the
gate potential VG the degeneracy can be increased in the vicinity
of the QPC. The gate beam thus acts as a local dimple creat-
ing superfluid regions close to the QPC (SI Appendix, Density
Distribution in the Center). We perform a transport experiment
by opening the QPC for a variable time t between 0 s and
4 s and subsequently measuring ∆N (t) and ∆T (t). For conve-
nience, we omit to write explicitly the time dependence of these
quantities. Particle and heat exchange between the reservoirs is
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Fig. 1. (A) Particle and heat exchange between two reservoirs containing
fermions with resonant interactions, mediated by the QPC which is charac-
terized by the confinement frequencies νx and νz and a gate potential VG.
We indicate equipotential lines at the channel connecting the hot (red) and
cold (blue) reservoirs. (B) Absorption picture and density profile after 1 ms
of time of flight. Here, a NESS has been reached after 4 s of transport. Solid
lines indicate fits (SI Appendix, Thermodynamic Properties of the Reservoirs),
from which we deduce both the atom numbers NR = 35(1) · 103, NL = 51(1) ·
103, and temperatures TR = 163(9) nK and TL = 231(8) nK. (C) Schematics of
the thermodynamic equilibration process in (∆T , ∆N) space with ∆T and
∆N increasing along the arrow direction. In general, a temperature-biased
nonequilibrium state evolves toward thermodynamic equilibrium along a
trajectory indicated in light blue. In the particular case of vanishing heat
diffusion, the system evolves predominantly along the ∆N axis to a NESS
where the absence of thermal relaxation processes prevents evolution to
thermodynamic equilibrium.

enabled during this time, leading to relaxation dynamics depicted
in Fig. 1C.

Dynamics
Fig. 2 presents a typical time evolution of ∆N , TR,L, and ∆µ
during transport. The gate potential and transverse frequencies
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Fig. 2. (A–C) Evolution of particle number imbalance ∆N (A), tempera-
tures in the left (red) and the right (blue) reservoir TL,R (B), and chemical
potential bias ∆µ (C) as a function of time t for an initial temperature
imbalance of ∆T0 = 49(8) nK. Within the first 1.5 s a particle imbal-
ance builds up, while the temperature bias shows no measurable evo-
lution. On the same timescale, ∆µ decreases to a finite nonzero value,
leading to a NESS with finite ∆N and ∆µ. In this configuration the
high-density regions close to the QPC are superfluid with local reduced
chemical potentials of qL = 3.2(4) on the left side and qR = 5.0(5) on the
right side.

were set to VG = 1.00(3) µK·kB and νx = 20.2(6) kHz, respec-
tively. The high-density regions close to the QPC are super-
fluid in this configuration. The initial state was prepared with
∆T0 = ∆T (t = 0) = 49(8) nK and ∆N0 = 0, with the equilib-
rium thermodynamics of the reservoirs yielding ∆µ0 =µL−
µR≈−130(31) nK · kB. During the first 1.5 s, a relative par-
ticle imbalance ∆N /N ≈ 0.16(1) rapidly builds up, leading to
a decrease of |∆µ| while ∆T is constant within experimen-
tal resolution. This evolution is driven by the finite value of
∆µ, resulting in a large current from the cold to the hot reser-
voir. It dominates over the much weaker thermoelectric current
from the hot to the cold reservoir, originating from the energy
dependence of the transmission through the QPC. This con-
trasts with previous observations with weakly interacting atoms
(26, 28) where the thermoelectric current was the dominating
contribution.

After a typical timescale τ+, ∆T and ∆N reach a steady state,
strongly departing from thermodynamical equilibrium. Inter-
estingly, the decline in ∆µ stops at a nonzero value ∆µs ≈
−55(8) nK · kB, which is estimated by taking the average over
the data points for times t ≥ 1.6 s. To account for the very weak
decrease of ∆N in the second half of the observation time,
we introduce a much longer timescale τ− describing the decay
of ∆N and ∆T back to zero. This timescale corresponds to

the thermal equilibration process shown in Fig. 1C, and our
observation shows that τ−� τ+.

To provide a quantitative understanding of the time evolution
of the system, we use a phenomenological model based on linear
response. While such an approach is known to fail in the low-
est temperature regimes, where nonlinear current–bias relations
have been observed (12), we find that it describes our obser-
vations well (SI Appendix, Linear Model) and allows for com-
parison between different QPC parameters. In this framework,
the particle current IN =−1/2 · d∆N /dt and entropy current
IS =−1/2 · d∆S/dt are expressed as a function of the differ-
ences in chemical potential ∆µ and temperature ∆T between
the reservoirs (28, 29):(

IN
IS

)
=G

(
1 αc

αc L+α2
c

)
·
(

∆µ
∆T

)
. [1]

The transport properties of the channel are captured by its parti-
cle and thermal conductances G and GT , which can be combined
into the Lorenz number L=GT/(T̄G), and its Seebeck coeffi-
cient αc describing the coupling between particle and entropy
currents.

The absence of the relaxation of temperature and particle
imbalance shown in Fig. 2 implies a very low heat conductance.
According to the first law of thermodynamics the energy flow IE
can be expressed as

IE = T̄ · IS + µ̄ · IN = (µ̄+αcT̄ )IN +GT∆T , [2]

where the first term on the right represents work flow and the
second term heat flow. Work is associated with the reversible
transfer of an average energy per particle µ̄+αcT̄ , while irre-
versible, diffusive heat transfer is proportional to ∆T , obeying
Fourier’s law. From Fig. 2A, we find IN = 0 and ∆T > 0 for
longer times. A direct measurement of IE yields a low value
for the heat conductance of GT = 0.2 ·GT ,NIF, where GT ,NIF is
the conductance expected for a noninteracting Fermi gas with
the same chemical potential, temperature, and gate potential (SI
Appendix, Transport Coefficients in a Noninteracting System).

Transport Coefficients
The transport parameters in mesoscopic systems strongly depend
on the geometry of the channel (30). We investigate this depen-
dency by measuring the dynamics of atom number difference and
temperature difference as the channel confinement is reduced,
departing from the single-mode regime. Fig. 3A presents the
results for four different transverse confinements νx . For weaker
confinements, ∆N and ∆T equilibrate to zero for long times.
This is expected as the geometric contact between the two reser-
voirs increases in size, leading to higher particle and diffusive
heat currents.

We fitted the time traces with the solutions from the lin-
ear response model in Eq. 1, which are biexponential functions
where we fixed ∆N (t = 0) = 0 and ∆T (t = 0) = ∆T0 according
to our preparation:

∆N (t) =A[exp(−t/τ+)− exp(−t/τ−)] [3]
∆T (t) =B exp(−t/τ+) + (∆T0−B) exp(−t/τ−). [4]

The fit parameters τ+, τ−, A, and B are functions of the trans-
port coefficients of the channel αc, G , L and the thermodynamics
of the reservoirs through their compressibility, heat capacity, and
dilatation coefficient. The fit is performed simultaneously on
both ∆N and ∆T , normalized with the statistical uncertainty
of the data. We find two timescales τ+ and τ− that differ by
one order of magnitude, a feature that remains even for fast
equilibration at weak confinement (Fig. 3B). Consequently, each
timescale can be mapped to the relaxation dynamics of heat (τ−)
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Fig. 3. Variation of the transverse confinement frequencies νx . (A) Evolution of ∆N and ∆T for confinements νx = 7.1(2) kHz, 9.3(3) kHz, 10.1(3) kHz,
and 20.2(6) kHz for fixed VG = 1.00(3) µK · kB. For high confinement, the system evolves toward a NESS. A decrease in νx results in increased relaxation to
thermodynamical equilibrium. Solid lines represent biexponential fits to the data (Eqs. 3 and 4). Both the left and the right reservoir are in the superfluid
phase with qL = 3.4(6) and qR = 5.9(7) at t = 0 s, where the values are averaged over the different confinements. Error bars indicate SEs for every fourth data
point. (B) Ratio of the timescales τ+, τ− from biexponential fits for various values of the confinement. While both timescales increase with confinement,
their ratio decreases, indicating a strong change in the transport coefficients for heat and particle transport. (C) Experimentally determined Lorenz number L
(violet circles) and Lorenz number expected for an equivalent noninteracting system (gray line) at equal chemical potential and temperature. The measured
values lie consistently below the π2/3 · k2

B predicted by Wiedemann–Franz law.

and particles (τ+) (SI Appendix, Linear Model). Within this linear
response solution, the direction and magnitude of the currents
result from a competition between the transport properties of the
channel and the thermodynamic response of the reservoirs (SI
Appendix, Linear Model), a feature that was encountered already
for the weakly interacting Fermi gas in ref. 26.

Lorenz Number. The relative weight of particle and heat conduc-
tance is captured by the Lorenz number L. Direct conversion of
the fit parameters in Eqs. 3 and 4 to L is, however, not possi-
ble because the biexponential model is ill-conditioned. Instead
we express L by estimating G and GT from particle and energy
currents IN and IE obtained from the data. The thermal con-
ductance and Seebeck coefficient are given by GT = IE/∆T and
αc =−∆µ/∆T at the point of vanishing particle current (Eq. 1).
The conductance G is calculated for short transport times where
we obtain G = IN /(∆µ+αc∆T ) (see SI Appendix, Evaluation
of Transport Parameters for details).

The estimates of the Lorenz number are presented in Fig.
3C, together with the expected value for a noninteracting QPC
obtained through Landauer theory with equivalent chemical
potential, temperature, and channel properties (28). For all val-
ues of νx , L is much smaller than in the noninteracting case,
which approaches the Wiedemann–Franz law LWF =π2/3 · k2

B.
Our observations thus violate the Wiedemann–Franz law by an
order of magnitude. This law roots in having the same carri-
ers for charge and heat and is robust to moderate interactions,
where the system can be described by a Fermi liquid. Deviations
from this law may appear when Fermi liquid theory breaks down,
as encountered for example in strongly correlated 1D systems,
where the Lorenz number can either increase (5) or decrease
(31–33). This is in line with our previous work, which showed
that the conductance of the strongly interacting Fermi gas close
to the critical point strongly differs from the predictions of the
Landauer formula (12, 34).

Seebeck Coefficient. The NESS observed in Fig. 2 allows us to
relate chemical potential and temperature differences to the
Seebeck coefficient. Therefore we express the vanishing particle

current as a competition between a current driven by ∆µ and
a current driven by ∆T . In the NESS, the two contributions
compensate each other. From the NESS realized in Fig. 2, we
find αc =−∆µ/∆T = 1.1(2)kB. Here we rely on a linear rela-
tion between the stationary value of ∆T and ∆µ (Eq. 1) at the
times where particle current IN = 0 vanishes (gray area in Fig. 2).
We measured (∆N , ∆T ) for different values of the heating (see
Fig. 4A for time traces) and convert them to (∆µ, ∆T ).

For the specific case of VG = 1.00(3) µK · kB and νx =
20.2(6) kHz, we characterize the quasi-steady state for a trans-
port time of t = 2 s and find a linear relation between ∆µ and
∆T (Fig. 4B). This confirms that the linear model Eq. 1 consti-
tutes an adequate description of our system. The linear relation
yields a Seebeck coefficient αc = 1.2(2)kB. To check that the
measurement of αc does not depend on the precise value of the
transport time, we repeat the measurement at t = 4 s and find
consistent values. This value is very close to the case of a 1D
quantum wire in the noninteracting regime, where one expects
αNIF = 1kB (SI Appendix, Transport Coefficients in a Noninter-
acting System). We further investigate the Seebeck coefficient
by increasing the attractive gate potential VG centered on the
QPC. This method has two consequences on the two-terminal
system: (i) It probes the single-particle energy dependence of
the transport parameters by increasing the number of available
modes in the QPC and (ii) the density in the vicinity of the QPC
is modified by tuning the chemical potential, locally increasing
the superfluid gap. We measure ∆µ and ∆T for various heating
strengths when IN = 0 as in Fig. 4B and deduce αc.

Fig. 4C shows αc as a function of the chemical poten-
tial modified by the attractive gate µ̃= µ̄+VG . The Seebeck
coefficient decreases from a value slightly below 2kB at µ̃=
0.91(3) µK · kB to a value close to zero for µ̃ > 2.06(6) µK · kB.
A similar decrease of αc is theoretically expected for a nonin-
teracting QPC (black curve in Fig. 4C) and is explained there
by an increase of the number of 1D channels available for the
transport of single particles. This similarity is surprising as trans-
port coefficients in this regime close to the superfluid transition
have shown order of magnitude deviations from the Landauer
model (12, 34). The residual deviation from the noninteracting
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Fig. 4. (A) Transients in (∆T , ∆N) space for various values of initial heating ∆T0 = 10(5) nK, 27(7) nK, 46(8) nK, and 83(7) nK at fixed νx = 20.2(6) kHz and
VG = 1.00(3) µK · kB. Gray lines are fits with Eqs. 3 and 4 for t = 0−8 s, where the arrows indicate the time progress. The NESS is at different stopping points
(black) depending on the initial heating. Error bars indicate SEs for every fourth data point. (B) Detailed study of ∆µ vs. ∆T (gray circles) at t = 2 s, where
particle current is zero. The black line indicates a linear fit to the data, with the slope representing the Seebeck coefficient d∆µ/d∆T =−α. Included in the
fits is the covariance of the data points, shown by the red shaded region for a selected data point (red star) representative for the full dataset (for details
on the fit see SI Appendix, Evaluation of Transport Parameters). The four stopping points from A are indicated as black diamonds. Error bars indicate SEs
for every fourth data point. (C) Measurement of the Seebeck coefficient for various values of the gate potential VG. The black line shows the prediction for
an equivalent noninteracting system (equal temperature and chemical potential). The transition point in the pockets from normal to superfluid is indicated
as a gray line.

curve—manifested in the faster decrease with µ̃—is compatible
with the expectations for a BCS superfluid close to the transition
point, where a smooth decrease of αc from the noninteracting
value to zero is expected (35).

Discussion
The coexistence of a vanishing Lorenz number and a finite See-
beck coefficient leading to a NESS at finite ∆µ distinguishes our
observations from the fountain effect seen in superfluid helium
II (36, 37). There, two vessels are connected by a macroscopic
duct, called a superleak. Heating one of them induces a current
from cold to hot until a steady state with different temperatures
and pressures is reached. In a two-fluid description of the super-
leak, viscosity prevents the normal, entropy-carrying fraction of
the fluid from crossing while allowing the entropy-less, super-
fluid fraction to flow and equilibrate the chemical potentials,
∆µ= 0 (15, 19). On the contrary, our system is characterized by
a nonzero Seebeck coefficient αc = IS/IN in the limit L= 0, indi-
cating a mean entropy transported by each particle of about 1kB.
In addition, our QPC is ballistic and not diffusive, and both its
high resistance for a normal Fermi gas (27) and its low resistance
for a superfluid (12) are predominantly determined by quan-
tum effects. The hydrodynamic models describing the fountain
effect are therefore expected to break down. Although thermo-
electric transport across a Josephson junction is well understood
within BCS theory (35, 38), no model has so far been proposed
to describe the unitary Fermi gas at a QPC.

The nonvanishing αc associated with a low Lorenz number
suggests that our QPC considered as a thermoelectric device
has a high efficiency. Within this framework, the time evolu-
tion of the reservoirs describes an open thermodynamic cycle.
There, the system acts first as a thermoelectric cooler, where
a chemical potential difference drives convection heat from
the cold to the hot reservoir, followed by a thermoelectric
engine part, where the temperature difference drives particles
from a lower to a higher chemical potential and hence pro-
duces work. As the transverse confinement frequency νx is
increased, both processes slow down and evolution gets closer
to reversibility, resulting in a decrease of the output power
P = IN∆µ and in a better conversion efficiency between work
and heat. This efficiency is determined by a dimensionless fig-
ure of merit ZT =α2

c/L (29) which is on the order of 14(8)

for the largest confinement νx = 20.2(6) kHz, where the large
errors stem from uncertainty in ∆T and ∆µ. Currently the best
thermoelectric materials have figures of merit on the order of
3–5 (4, 39). Further considerations on the efficiency are given
by the comparison with the Carnot efficiency (SI Appendix,
Efficiency).

Our fountain effect setting with fermions provides a con-
ceptual link between the thermoelectric transport witnessed in
electronic devices and the bosonic fountain effect observed with
helium II. Its anomalous features—exceptionally small Lorenz
number and finite Seebeck coefficient—shed light on the out-
of-equilibrium properties of the unitary Fermi gas and portend
potential applications to ultracold atoms, such as the realization
of novel cooling schemes. They also underline the necessity of
a better understanding of strongly correlated systems at finite
temperatures. Here, measuring the spin degree of freedom
could yield additional information (20, 21), but the inhomoge-
neous nature of the system makes the interpretation even more
challenging. A complementation to our present study would
be the probing the full Bose–Einstein condensate (BEC)-BCS
crossover. This, however, requires knowledge of the full finite
temperature EoS, which has not been measured yet.

Materials and Methods
Preparing the Cloud and QPC. We prepare an elongated cloud of fermionic
6Li atoms in a balanced mixture of the lowest and third lowest hyperfine
state in a hybrid configuration of a far-detuned 1,064-nm dipole trap and a
harmonic magnetic trap, confining the atoms along the transverse (x, z)
and longitudinal (y) direction, respectively. We evaporatively cool down
the cloud by reducing the trap depth from 6 µK to 3 µK on a broad
Feshbach resonance at 689 G. After a final tilt evaporation step (40) along
the z direction, the cloud reaches final temperatures of around 184(8) nK.
The trap frequencies during transport are νrx = 318.5 Hz, νry = 28.4 Hz, and
νrz = 255.9 Hz. A repulsive light-sheet beam at 532 nm created by a π-phase
plate confines the cloud in the center in the z direction with a longitudinal
1/e2 waist of wLS,y= 30(1) µm. An orthogonal 532-nm beam of waist wx=

5.49(1) µm in a split-gate shape with an intensity node in the center, real-
ized with a transmission mask imaged onto the atom plane, confines the
atoms in the x direction. The two transverse confinements effectively lead
to a quasi-1D constriction with trapping frequencies νx = 20.2(6) kHz and
νz = 12.9(5) kHz.

Transport. An amplitude-modulated beam at a wavelength of 767 nm
is directed on one of the reservoirs, parametrically heating it up. The

Husmann et al. PNAS | August 21, 2018 | vol. 115 | no. 34 | 8567

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803336115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803336115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803336115/-/DCSupplemental


www.manaraa.com

modulation frequency is optimized experimentally to νmod = 125 Hz, which
is on the order of the transverse trapping frequencies νrx and νrz of the
dipole trap. The position of this beam is controlled by a piezo-steered mir-
ror and can be shifted to either reservoir. The same beam is centered on
the QPC during transport and acts there as an attractive gate potential
VG, locally tuning the density. When preparing the reservoirs, transport
between the reservoirs is blocked by a repulsive wall beam focused onto
the channel. The beam is removed for a variable transport time t during
which exchange between the reservoirs through the channel is enabled.
After time t we separate the reservoirs with the wall beam and take absorp-
tion images after a short time of flight of 1 ms in the transverse directions.
This reduces the densities and allows us to image in the low saturation
regime.

Thermodynamic Properties of the Reservoirs. From the density profiles we
deduce the atom number in each reservoir as well as their internal energy

E = 3m(2πνry )2
〈

y2
〉

via the virial theorem for a harmonic trap at unitarity

(41) and the second moment

〈
y2

〉
=

∫∞
−∞ dyn1D(y)y2∫∞
−∞ dyn1D(y)

[5]

of the fitted density distribution n1D along the longitudinal direction (42)
shown in Fig. 1B.

Along with the known equation of state of the unitary Fermi gas, these
two quantities define all of the thermodynamic parameters of the individual
reservoirs, including their temperatures TL,R used in Figs. 2–4. The equation
of state is based on measurements in ref. 8 and continued toward the nor-
mal and degenerate regimes in ref. 14 for a homogeneous gas. We apply
local density approximation to obtain the trap-averaged quantities assum-
ing a harmonic potential (SI Appendix, Thermodynamic Properties of the
Reservoirs).
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